
TracNav

JPFWiki - Welcome Page•
Introduction...•
Installing JPF...•
User Guide•

Application Types♦
JPF Components♦
Configuring JPF♦
Running JPF♦
JPF Output♦
The JPF API♦

Developer Guide...•
Projects...•
Summer Projects•
External Projects•
Change(B)log•
About...•
Events•
Presentations•
Papers•
FAQ•
History?•
Support•
People?•
Playground•
Table of Context•

Running JPF
There are five general ways to run JPF, depending on your execution environment (command prompt or IDE) and
desired level of configuration support. This page has to cover quite some ground, so bear with us

from a command prompt (operating system shell)1.
from an IDE (!NetBeans, Eclipse) without using JPF plugins2.
from an IDE with JPF plugins installed3.
from within a JUnit test class4.
explicitly from an arbitrary Java program5.

1. Command Line

There are several ways to run JPF from the command line, using varying degrees of its runtime infrastructure. The
most simple way is to use the provided bin/jpf script of the jpf-core distribution. Go to the directory where your
SUT classes reside, and do a

> <jpf-core-dir>/bin/jpf +classpath=. <application-main-class>

Running JPF 1

http://svn.ipd.uka.de/trac/javaparty/wiki/TracNav

or preferably

> <jpf-core-dir>/bin/jpf <application-property-file>.jpf

(see target specification below). If you want to avoid platform specific scripts, you only have to slightly expand this
to

> java -jar <jpf-core-dir>/build/RunJPF.jar +classpath=. <application-main-class>

This makes use of the small RunJPF.jar startup jar that is part of the jpf-core distribution, which only includes the
classes that are required to start the JPF bootstrapping process (esp. the JPF classloader). These classes
automatically process the various JPF configuration files. If your SUT is not trivial, it is also recommended to add a
"-Xmx1024m" host VM option, to avoid running out of memory.

Last (and probably most rarely), you can directly start JPF and give it an explicit classpath. This amounts to
something like

> java -classpath <jpf-core-dir>/build/jpf.jar:<jpf-core-dir>/lib/bcel.jar gov.nasa.jpf.JPF \
 +classpath=. <application-main-class>

Of course, this gets quickly more complicated if you use JPF extensions, which require to add to both the host VM
and the JPF classpath, which is completely automated if you use the RunJPF.jar method. Explicitly setting paths is
only for rare occasions if you develop JPF components yourself.

There are three different argument groups that are processed by JPF:

(1) JPF command line options

These options should come first (after RunJPF.jar), and all start with a hyphen ("-"). The set of currently supported
options is:

"-help" : show usage information and exit•
"-log" : print the configuration steps•
"-show" : print the configuration dictionary after configuration is complete•

The last two options are mostly used to debug if the JPF configuration does not work as expected. Usually you start
with "-show", and if you don't see the values you expect, continue with "-log" to find out how the values got set.

(2) JPF properties

This is the second group of options, which all start with a plus ("+") marker, and consist of "+<key>=<value>"
pairs like

.. +cg.enumerate_random=true

All properties from the various JPF properties configuration files can be overridden from the commandline, which
means there is no limit regarding number and values of options. If you want to extend an existing value, you can
use any of the following notations

+<key>+=<value> - which appends <value>•
++<key>=<value> - which prepends <value>•

1. Command Line 2

+<key>=..${<key>}.. - which gives explicit control over extension positions•

Normal JPF properties "${<key>}" expansion is supported.

If the "=<value>" part is omitted, a default value of "true" is assumed. If you want to set a value to null (i.e.
remove a key), just skip the <value> part, as in "+<key>="

(3) target specification

There are two ways to specify what application JPF should analyze

explicit classname and arguments
> jpf ... x.y.MyApplication arg1 arg2 ..

•

application property file (*.jpf)
> jpf ... MyApplication.jpf

•

We recommend using the second way, since it enables you to store all required settings in a text file that can be
kept together with the SUT sources, and also allows you to start JPF from within NetBeans or Eclipse just by
selecting the *.jpf file (this is mainly what the IDE plugins are for). Please note that application property files
require a "target" entry, as in

JPF application property file to verify x.y.MyApplication
target = x.y.MyApplication
target_args = arg1,arg2
...

2. Running JPF from within IDE without plugins

You can start JPF from within NetBeans or Eclipse without having the IDE specific JPF plugins installed. In this
case, JPF uses the standard IDE consoles to report verification results. For details, please refer to the following
pages:

Running JPF from within NetBeans without plugin•
Running JPF from Eclipse without plugin•

Note that this is not the recommended way to run JPF from within an IDE, unless you want to debug JPF or your
classes.

3. Running JPF from within IDE with plugins

You can simplify launching JPF from within NetBeans or Eclipse by using the respective plugins that are available
from this server. In this case, you just have to create/select an application property (*.jpf) file within your test
project, and use the IDE context menu to start a graphical JPF user interface. These so called "JPF shells" are
separate applications (that can be configured through normal JPF properties), i.e. appear in a separate window, but
can still communicate with the IDE, e.g. to position editor windows. You can find more details on

(2) JPF properties 3

Running JPF from within NetBeans with netbeans-jpf plugin•
Running JPF from Eclipse with eclipse-jpf plugin•

This is becoming the primary method of running JPF. The benefits are twofold: (1) this is executed outside of the
IDE process, i.e. it doesn't crash the IDE if JPF runs out of memory, and (2) it makes use of all your standard JPF
configuration (site.properties and jpf.properties), in the same way like running JPF from a command line.

4. Launching JPF from JUnit tests

JPF comes with JUnit based testing infrastructure that is used for its own regression test suite. This mechanism can
also be used to create your own test drivers that are executed by JUnit, e.g. through an Ant build script. The source
structure of your tests is quite simple

import gov.nasa.jpf.util.test.JPFTestSuite;
import org.junit.Test;

public class MyTest extends JPFTestSuite {

public static void main(String[] args) throws InvocationTargetException {
 runTestsOfThisClass(args);
}

@Test
public void testSomeFunction() {
if (verifyNoPropertyViolation()) { // or a number of other JPFTestSuite defined goals

 someFuntction(); .. // this section is verified by JPF
}

}

//.. more @Test methods

From a JUnit perspective, this is a completely normal test class. You can therefore execute such a test with the
standard <junit> Ant task, like

<property file="${user.home}/.jpf/site.properties"/>
<property file="${jpf-core}/jpf.properties"/>

 ...
<junit printsummary="on" showoutput="off" haltonfailure="yes"

fork="yes" forkmode="perTest" maxmemory="1024m">
 ...

<classpath>
 ...

<pathelement location="${jpf-core}/build/jpf.jar"/>
</classpath>

<batchtest todir="build/tests">
<fileset dir="build/tests">

 ...
<include name="**/*Test.class"/>

</fileset>
</batchtest>

</junit>
 ...

3. Running JPF from within IDE with plugins 4

http://www.junit.org
http://apache.ant.org
http://ant.apache.org

Only jpf.jar needs to be in the host VM classpath when compiling and running the test, since
gov.nasa.jpf.util.test.JPFTestSuite will use the normal JPF configuration (site.properties and
configured jpf.properties) to set up the required native_classpath, classpath and sourcepath settings
at runtime. Please refer to the JPF configuration page for details.

If you want explicit control over the host VM classpath (JPF's native_classpath setting), you can use
gov.nasa.util.test.TestJPF as the base class for your test (which doesn't use the JPF classloader), but in
this case you need to add all jars required by all JPF components you need for your test (i.e.
jpf-<project>/build/jpf-<project>.jar and jpf-<project>/lib/*.jar for all required JPF
projects).

If you don't have control over the build.xml because of the IDE specific project type (e.g. if your SUT is configured
as a NetBeans "Class Library Project"), you have to add jpf.jar as an external jar to your IDE project configuration.

In addition to adding jpf.jar to your build.xml or your IDE project configuration, you might want to add a
jpf.properties file to the root directory of your project, to set up things like where JPF finds classes and sources it
should analyze (i.e. settings that should be common for all your tests). A generic example could be

example of JPF project properties file to set project specific paths

no native classpath required if this is not a JPF project itself

where does JPF find the classfiles to execute
classpath=build/classes;build/test/classes

where are the sources, in case JPF wants to create a trace
sourcepath=src;test

other project common JPF settings like autoloaders etc.
listener.autoload+=,javax.annotation.Nonnull

 listener.javax.annotation.Nonnull=.aprop.listener.NonnullChecker
 ...

You can find project examples here

standard NetBeans project ("Java Class Library" or "Java Application")•
Freeform NetBeans project? (with user supplied build.xml)•
standard Eclipse project? (with user supplied build.xml)•

Please refer to the Verify API and the JPF tests pages for details about JPF APIs (like
verifyNoPropertyViolation(..) or Verify.getInt(min,max)) you can use within your test
classes.

Since JPF projects use the same infrastructure for their regression tests, you can find a wealth of examples under
the src/tests directories of your installed JPF projects.

5. Explicitly Launching JPF from a Java Program

Since JPF is a pure Java application, you can also run it from your own application. The corresponding pattern
looks like this:

4. Launching JPF from JUnit tests 5

public class MyJPFLauncher {
...
public static void main(String[] args){
..
try {

// this initializes the JPF configuration from default.properties, site.properties
// configured extensions (jpf.properties), current directory (jpf.properies) and
// command line args ("+<key>=<value>" options and *.jpf)

 Config conf = JPF.createConfig(args);

// ... modify config according to your needs
 conf.setProperty("my.property", "whatever");

// ... explicitly create listeners (could be reused over multiple JPF runs)
 MyListener myListener = ...

 JPF jpf = new JPF(conf);

// ... set your listeners
 jpf.addListener(myListener);

 jpf.run();
if (jpf.foundErrors()){
// ... process property violations discovered by JPF

}
} catch (JPFConfigException cx){
// ... handle configuration exception
// ... can happen before running JPF and indicates inconsistent configuration data

} catch (JPFException jx){
// ... handle exception while executing JPF, can be further differentiated into
// ... JPFListenerException - occurred from within configured listener
// ... JPFNativePeerException - occurred from within MJI method/native peer
// ... all others indicate JPF internal errors

}
...

Please refer to the Embedding JPF developers documentation for details. If you start JPF through your own
launcher application, you have to take care of setting up the required CLASSPATH entries so that it finds your (and
JPFs) classes, or you can use the generic gov.nasa.jpf.Main to load and start your launcher class, which
makes use of all the path settings you have in your site.properties and the directories holding project properties
(jpf.properties) referenced therein (details on how to configure JPF. This brings us back to the command
line at the top of this page, only that you specify which class should be loaded through Main:

> java -jar .../RunJPF.jar -a MyJPFLauncher ...

(note that gov.nasa.jpf.Main is the Main-Class entry of the executable RunJPF.jar, which also holds
the JPFClassLoader).

Just for the sake of completeness, there is another way to start JPF explicitly through a gov.nasa.jpf.JPFShell?
implementation, which is using the normal JPF.main() to load your shell, which in turn instantiates and runs a
JPF object. This is specified in your application property (*.jpf) file with the shell=<your-shell-class>
option. Use this if your way to start JPF is optional, i.e. JPF could also be run normally with your *.jpf. The
graphical JPF shell is an example for this.

5. Explicitly Launching JPF from a Java Program 6

	tmpqgbZ9Jtracpdf

